Fe-Ag nanocomposite: Hydrothermal preparation of iron nanoparticles and silver dendrite like nanostructures
Authors
Abstract:
At the first stage Fe3O4 and Fe nanoparticles were synthesized via a simple hydrothermal method. Then silver nanoparticles and Fe-Ag nanocomposites were synthesized in the presence of NaBH4. The prepared products were characterized by X-ray diffraction pattern, scanning electron microscopy, and Fourier transform infrared spectroscopy. Vibrating Sample magnetometer illustrated that Fe nanoparticles have super paramagnetic behaviour. The photo catalytic behaviour of Fe-Ag nanocomposites was investigated using the degradation of three various azo dyes under ultraviolet light irradiation. The results show that nanocomposites have feasible magnetic and photo catalytic properties.
similar resources
Hydrothermal Synthesis of Bi2S3 Nanostructures and ABS-Based Polymeric Nanocomposite
Bismuth sulfide nano-rods and nano-flowers were synthesized via a hydrothermal reaction at a relatively low temperature. Thioglycolic acid is used as sulfur source and capping agent simultaneously. Bi2S3 nanostructures were then added to acrylonitrile-butadiene-styrene (ABS) copolymer. The thermal stability behavior of ABS filled with bismuth sulfide nano-rods were investigated by thermogravime...
full textHydrothermal preparation of silver telluride nanostructures and photo-catalytic investigation in degradation of toxic dyes
Different morphologies of Ag2Te nanostructures were synthesized using TeCl4 as a new precursor and hydrazine hydrate as reducing agent by a hydrothermal method. Various parameters that affect on morphology and purity of nanostructures were optimized. According to our experiments the best time and temperature for preparation of this nanostructure are 12 h and 120 °C. The photo-catalytic behaviou...
full textPreparation, Characterization and Photocatalytic Activity of Ag-Cd-ZnO and Ag-Cu-ZnO Nanostructures
In this study, ZnO nanopowders and ZnO doped with metals (Cu , Ag- doped ZnO) and (Cd, Ag- doped ZnO) were synthesized by the sol-gel method in order to investigation on the codoping effect on the band gap and photocatalytic activity of ZnO. The synthesized samples are characterized by IR spectroscopy technique. Moreover, the absorption coefficients of the ZnO, Ag-Cd-ZnO and Ag-Cu-ZnO were anal...
full textFacile preparation of silver nanoparticles and antibacterial Chitosan-Ag polymeric nanocomposites
Silver nanostructures as an effective antibacterial materials were synthesized via three various hydrothermal, sono-chemical and microwave methods using water as a green solvent. Then Chitosan-Ag polymer based nanocomposites were made by a fast chemical procedure. The influence of power, temperature and time on the morphology and particle size of the products was investigated. Scanning electron...
full texthydrothermal synthesis of bi2s3 nanostructures and abs-based polymeric nanocomposite
bismuth sulfide nano-rods and nano-flowers were synthesized via a hydrothermal reaction at a relatively low temperature. thioglycolic acid is used as sulfur source and capping agent simultaneously. bi2s3 nanostructures were then added to acrylonitrile-butadiene-styrene (abs) copolymer. the thermal stability behavior of abs filled with bismuth sulfide nano-rods were investigated by thermogravime...
full textNanocomposite Membranes with Magnesium, Titanium, Iron and Silver Nanoparticles - A Review
Nanocomposite membrane comprising of both organic and inorganic material qualities have become a prime focus for the next generation membranes. Nanocomposite may consist of hard permeable or impermeable inorganic particles, such as zeolites, carbon molecular sieves and, silica and carbon nanotubes, metal oxide blended with continuous polymeric matrix presents an attract...
full textMy Resources
Journal title
volume 7 issue 2
pages 111- 120
publication date 2017-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023